Issue 12, 2008

Synthesis of 5-hydroxy-2,3,4,5-tetrahydro-[1H]-2-benzazepin-4-ones: selective antagonists of muscarinic (M3) receptors

Abstract

Two approaches to tetrahydro-[1H]-2-benzazepin-4-ones of interest as potentially selective, muscarinic (M3) receptor antagonists have been developed. Base promoted addition of 2-(tert-butoxycarbonylamino)methyl-1,3-dithiane 5 with 2-(tert-butyldimethylsiloxymethyl)benzyl chloride 14 gave the corresponding 2,2-dialkylated 1,3-dithiane 15 which was taken through to the dithiane derivative 19 of the parent 2,3,4,5-tetrahydro-[1H]-2-benzazepin-4-one by desilylation, oxidation and cyclisation via a reductive amination. After conversion into the N-tert-butyloxycarbonyl, N-toluene p-sulfonyl and N-benzyl derivatives 20–22, hydrolysis of the dithiane gave the N-protected tetrahydro-[1H]-2-benzazepin-4-ones 23–25. However, preliminary attempts to convert these into 5-cycloalkyl-5-hydroxy derivatives were not successful. In the second approach, ring-closing metathesis was used to prepare 2,3-dihydro-[1H]-2-benzazepines which were hydroxylated and oxidized to give the required 5-hydroxy-2,3,4,5-tetrahydro-[1H]-2-benzazepin-4-ones. Following preliminary studies, ring-closing metathesis of the dienyl N-(2-nitrophenyl)sulfonamide 48 gave the dihydrobenzazepine 50 which was converted into the 2-butyl-5-cyclobutyl-5-hydroxytetrahydrobenzazepin-4-one 55 by hydroxylation and N-deprotection followed by N-alkylation via reductive amination, and oxidation. This chemistry was then used to prepare the 2-[(N-arylmethyl)aminoalkyl analogues 69, 72, 76 and 78. N-Acylation followed by amide reduction using the boranetetrahydrofuran complex was also used to achieve N-alkylation of dihydrobenzazepines and this approach was used to prepare the 5-cyclopentyl-5-hydroxy-2,3,4,5-tetrahydro-[1H]-2-benzazepin-4-one 103 and the 5-cyclobutyl-8-fluoro-5-hydroxy-2,3,4,5-tetrahydro-[1H]-2-benzazepin-4-one 126. The structures of 2-tert-butyloxycarbonyl-4,4-propylenedithio-2,3,4,5-tetrahydro-[1H]-2-benzazepine 20 and (4RS,5SR)-2-butyl-5-cyclobutyl-4,5-dihydroxy-2,3,4,5-tetrahydro-[1H]-2-benzazepine 53 were confirmed by X-ray diffraction. The racemic 5-cycloalkyl-5-hydroxy-2,3,4,5-tetrahydro-[1H]-2-benzazepin-4-ones were screened for muscarinic receptor antagonism. For M3 receptors from guinea pig ileum, these compounds had log10KB values of up to 7.2 with selectivities over M2 receptors from guinea pig left atria of approximately 40.

Graphical abstract: Synthesis of 5-hydroxy-2,3,4,5-tetrahydro-[1H]-2-benzazepin-4-ones: selective antagonists of muscarinic (M3) receptors

Supplementary files

Article information

Article type
Paper
Submitted
22 Jan 2008
Accepted
06 Mar 2008
First published
18 Apr 2008

Org. Biomol. Chem., 2008,6, 2138-2157

Synthesis of 5-hydroxy-2,3,4,5-tetrahydro-[1H]-2-benzazepin-4-ones: selective antagonists of muscarinic (M3) receptors

B. Bradshaw, P. Evans, J. Fletcher, A. T. L. Lee, P. G. Mwashimba, D. Oehlrich, E. J. Thomas, R. H. Davies, B. C. P. Allen, K. J. Broadley, A. Hamrouni and C. Escargueil, Org. Biomol. Chem., 2008, 6, 2138 DOI: 10.1039/B801206G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements