Issue 10, 2008

Regioselective intramolecular ring closure of 2-amino-6-bromo-2,6-dideoxyhexono-1,4-lactones to 5- or 6-membered iminuronic acid analogues: synthesis of 1-deoxymannojirimycin and 2,5-dideoxy-2,5-imino-d-glucitol

Abstract

1-Deoxymannojirimycin (8c) was synthesised from 2-amino-6-bromo-2,6-dideoxy-D-mannono-1,4-lactone (7) by intramolecular direct displacement of the C-6 bromine employing non-aqueous base treatment followed by reduction of the intermediate methyl ester. Likewise, using aqueous base at pH 12, ring closure took place by 5-exo attack on the 5,6-epoxide leading to 2,5-dideoxy-2,5-imino-L-gulonic acid (9b), which was reduced to 2,5-dideoxy-2,5-imino-D-glucitol (9c). The method was further applied to 2-amino-6-bromo-2,6-dideoxy-D-galacto- as well as D-talo-1,4-lactones (14 and 15). However, only the corresponding six-membered ring 1,5-iminuronic acid mimetics, namely (2R,3R,4S,5R)-3,4,5-trihydroxypipecolic acid (2,6-dideoxy-2,6-imino-D-galactonic acid, 16) and (2S,3R,4S,5R)-3,4,5-trihydroxypipecolic acid (2,6-dideoxy-2,6-imino-D-talonic acid, 17), were obtained. The corresponding enantiomers, L-galacto- as well as L-talo-2-amino-6-bromo-2,6-dideoxy-1,4-lactones ent-14 and ent-15, reacted accordingly to give the D-galacto- and L-altro-1,5-iminuronic acid mimetics, (2S,3S,4R,5S)-3,4,5-trihydroxypipecolic acid (2,6-dideoxy-2,6-imino-L-galactonic acid, ent-16) and (2R,3S,4R,5S)-3,4,5-trihydroxypipecolic acids (2,6-dideoxy-2,6-imino-L-talonic acid, ent-17), respectively.

Graphical abstract: Regioselective intramolecular ring closure of 2-amino-6-bromo-2,6-dideoxyhexono-1,4-lactones to 5- or 6-membered iminuronic acid analogues: synthesis of 1-deoxymannojirimycin and 2,5-dideoxy-2,5-imino-d-glucitol

Article information

Article type
Paper
Submitted
20 Dec 2007
Accepted
13 Mar 2008
First published
28 Mar 2008

Org. Biomol. Chem., 2008,6, 1779-1786

Regioselective intramolecular ring closure of 2-amino-6-bromo-2,6-dideoxyhexono-1,4-lactones to 5- or 6-membered iminuronic acid analogues: synthesis of 1-deoxymannojirimycin and 2,5-dideoxy-2,5-imino-D-glucitol

B. M. Malle, I. Lundt and T. M. Wrodnigg, Org. Biomol. Chem., 2008, 6, 1779 DOI: 10.1039/B719631H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements