Issue 2, 2008

Assessment of the precision and accuracy of thorium (232Th) and uranium (238U) measured by quadrupole based inductively coupled plasma-mass spectrometry using liquid nebulization, nanosecond and femtosecond laser ablation

Abstract

The precision and accuracy of the 238U/232Th ratio were evaluated from liquid nebulization and direct solid sampling repetitive pulsed laser ablation. Nanosecond and femtosecond pulsed lasers at 266 nm wavelength were utilized for the ablation studies. The ICP-MS and sampling parameters were optimized for each procedure; flow rates, gases, laser energy and other parameters were optimized for the particular sampling approach and therefore will not be the same. The work is not a comparison per se but represents performance metrics for three optimized sampling modalities. As expected, nanosecond pulsed ablation provided the greatest inaccuracy (>30%) from the nominal 238U/232Th bulk ratio. This deviation from bulk ratio is attributed to incomplete vaporization of large particle agglomerates produced by nanosecond laser ablation. Femtosecond pulsed ablation provided inaccuracy (∼1–3%) approaching that of liquid nebulization (∼1%). In terms of temporal relative standard deviation (TRSD) and relative standard deviation (RSD), liquid nebulization provided the best precision for the 238U/232Th ratio (TRSD ∼3–5%, RSD ∼0.2–0.6%), femtosecond laser ablation (TRSD ∼5–12%, RSD ∼1%) and nanosecond laser ablation (TRSD ∼25–48%, RSD ∼9–12%). Laser ablation requires less sample to achieve these performance metrics, in some cases less than a factor of 100-times depending on the entrainment and transport efficiency.

Graphical abstract: Assessment of the precision and accuracy of thorium (232Th) and uranium (238U) measured by quadrupole based inductively coupled plasma-mass spectrometry using liquid nebulization, nanosecond and femtosecond laser ablation

Article information

Article type
Paper
Submitted
22 Feb 2007
Accepted
10 Oct 2007
First published
24 Oct 2007

J. Anal. At. Spectrom., 2008,23, 229-234

Assessment of the precision and accuracy of thorium (232Th) and uranium (238U) measured by quadrupole based inductively coupled plasma-mass spectrometry using liquid nebulization, nanosecond and femtosecond laser ablation

J. J. Gonzalez, D. Oropeza, X. Mao and R. E. Russo, J. Anal. At. Spectrom., 2008, 23, 229 DOI: 10.1039/B702754K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements