Issue 44, 2008

The role of salicylic acid, l-ascorbic acid and oxalic acid in promoting the oxidation of alkenes with H2O2 catalysed by [MnIV2(O)3(tmtacn)2]2+

Abstract

The role played by the additives salicylic acid, L-ascorbic acid and oxalic acid in promoting the catalytic activity of [MnIV2(O)3(tmtacn)2](PF6)2 {1(PF6)2, where tmtacn = N,N′,N″-trimethyl-1,4,7-triazacyclononane} in the epoxidation and cis-dihydroxylation of alkenes with H2O2 and in suppressing the catalysed decomposition of H2O2 is examined. Whereas aliphatic and aromatic carboxylic acids effect enhancement of the catalytic activity of 1 through the in situ formation dinuclear carboxylato bridged complexes of the type [MnIII2(μ-O)(μ-RCO2)2(tmtacn)2]2+, for L-ascorbic acid and oxalic acid notable differences in reactivity are observed. Although for L-ascorbic acid key differences in the spectroscopic properties of the reaction mixtures are observed compared with carboxylic acids, the involvement of carboxylic acids formed in situ is apparent. For oxalic acid the situation is more complex with two distinct catalyst systems in operation; the first, which engages in epoxidation only, is dominant until the oxalic acid additive is consumed completely at which point carboxylic acids formed in situ take on the role of additives to form a second distinct catalyst system, i.e. that which was observed for alkyl and aromatic carboxylic acids, which yield both cis-diol and epoxide products.

Graphical abstract: The role of salicylic acid, l-ascorbic acid and oxalic acid in promoting the oxidation of alkenes with H2O2 catalysed by [MnIV2(O)3(tmtacn)2]2+

Supplementary files

Article information

Article type
Paper
Submitted
30 May 2008
Accepted
12 Aug 2008
First published
10 Oct 2008

Dalton Trans., 2008, 6283-6295

The role of salicylic acid, L-ascorbic acid and oxalic acid in promoting the oxidation of alkenes with H2O2 catalysed by [MnIV2(O)3(tmtacn)2]2+

J. W. de Boer, P. L. Alsters, A. Meetsma, R. Hage, W. R. Browne and B. L. Feringa, Dalton Trans., 2008, 6283 DOI: 10.1039/B809177C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements