Issue 20, 2008

Copper(ii) 12-metallacrown-4 complexes of α-, β- and γ-aminohydroxamic acids: a comparative thermodynamic study in aqueous solution

Abstract

A complete thermodynamic study of the protonation and CuII complex formation equilibria of a series of α- and β-aminohydroxamic acids in aqueous solution was performed. The thermodynamic parameters obtained for the protonation of glycine-, (S)-α-alanine-, (R,S)-valine-, (S)-leucine-, β-alanine- and (R)-aspartic-β-hydroxamic acids were compared with those previously reported for γ-amino- and (S)-glutamic-γ-hydroxamic acids. The enthalpy/entropy parameters calculated for the protonation microequilibria of these three types of ligands are in very good agreement with the literature values for simple amines and hydroxamic acids. The pentanuclear complexes [Cu5L4H−4]2+ contain the ligands acting as (NH2,N)-(O,O) bridging bis-chelating and correspond to 12-metallacrown-4 (12-MC-4) which are formed by self-assembly between pH 4 and 6 with α-aminohydroxamates (HL), while those with β- and γ-derivatives exist in a wider pH range (4–11). The stability order of these metallomacrocycles is β- ≫ α- > γ-aminohydroxamates. The formation of 12-MC-4 with α-aminohydroxamates is entropy-driven, and that with β-derivatives is enthalpy-driven, while with γ-GABAhydroxamate both effects occur. These results are interpreted on the basis of specific enthalpies or entropy contributions related to chelate ring dimensions, charge neutralization and solvation-desolvation effects. The enthalpy/entropy parameters of 12-MC-4 with α-aminohydroxamic acids considered are also dependent on the optical purity of the ligands. Actually, that with (R,S)-valinehydroxamic acid presents an higher entropy and a lower enthalpy value than those of enantiopure ligands, although the corresponding stabilities are almost equivalent. Moreover, DFT calculations are in agreement with a more exothermic enthalpy found for metallacrowns with enantiomerically pure ligands.

Graphical abstract: Copper(ii) 12-metallacrown-4 complexes of α-, β- and γ-aminohydroxamic acids: a comparative thermodynamic study in aqueous solution

Supplementary files

Article information

Article type
Paper
Submitted
04 Dec 2007
Accepted
05 Mar 2008
First published
07 Apr 2008

Dalton Trans., 2008, 2693-2701

Copper(II) 12-metallacrown-4 complexes of α-, β- and γ-aminohydroxamic acids: a comparative thermodynamic study in aqueous solution

M. Tegoni, M. Remelli, D. Bacco, L. Marchiò and F. Dallavalle, Dalton Trans., 2008, 2693 DOI: 10.1039/B718765C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements