Issue 33, 2008

Oxidation investigation of nickel nanoparticles

Abstract

This work reported an experimental investigation of complete oxidation of nickel nanoparticles using simultaneous thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC). Nickel nanoparticles and their elemental compositions were characterized by Brunauer–Emmett–Teller (BET) analysis, transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). The oxidation experiments were performed under isoconversion conditions for seven heating rates, varying from 2 to 20 K min−1, with temperatures up to 1000 °C. The experiments revealed unique oxidation behaviour of nickel at the nanometre scale, such as early oxidation and melting phenomena, variable activation energies and different oxidation kinetics between low and high conversion ratios. Unlike its bulk counterpart where the activation energy is a constant, the activation energy of nickel nanoparticles depended on the conversion ratio, ranging between 1.4 and 1.8 eV. The oxidation kinetics of nickel nanoparticles changed from the classical diffusion controlled mechanism to a pseudo-homogeneous reaction as conversion ratios were over 50%. The oxidation mechanisms of nickel nanoparticles were further discussed and future studies to enhance understanding were identified.

Graphical abstract: Oxidation investigation of nickel nanoparticles

Article information

Article type
Paper
Submitted
14 Jan 2008
Accepted
06 May 2008
First published
27 Jun 2008

Phys. Chem. Chem. Phys., 2008,10, 5057-5065

Oxidation investigation of nickel nanoparticles

P. Song, D. Wen, Z. X. Guo and T. Korakianitis, Phys. Chem. Chem. Phys., 2008, 10, 5057 DOI: 10.1039/B800672E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements