Issue 16, 2008

On the electrodeposition of titanium in ionic liquids

Abstract

The ability to electrodeposit titanium at low temperatures would be an important breakthrough for making corrosion resistant layers on a variety of technically important materials. Ionic liquids have often been considered as suitable solvents for the electrodeposition of titanium. In the present paper we have extensively investigated whether titanium can be electrodeposited from its halides (TiCl4, TiF4, TiI4) in different ionic liquids, namely1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([EMIm]Tf2N), 1-butyl-1-methylpyrrolidinium bis(trifluoromethyl-sulfonyl)amide ([BMP]Tf2N), and trihexyltetradecyl-phosphonium bis(trifluoromethylsulfonyl)amide ([P14,6,6,6]Tf2N). Cyclic voltammetry and EQCM measurements show that, instead of elemental Ti, only non-stoichiometric halides are formed, for example with average stoichiometries of TiCl0.2, TiCl0.5 and TiCl1.1. In situSTM measurements show that—in the best case—an ultrathin layer of Ti or TiClx with thickness below 1 nm can be obtained. In addition, results from both electrochemical and chemical reduction experiments of TiCl4 in a number of these ionic liquids support the formation of insoluble titanium cation–chloride complex species often involving the solvent. Solubility studies suggest that TiCl3 and, particularly, TiCl2 have very limited solubility in these Tf2N based ionic liquids. Therefore it does not appear possible to reduce Ti4+ completely to the metal in the presence of chloride. Successful deposition processing for titanium in ionic liquids will require different maybe tailor-made titanium precursors that avoid these problems.

Graphical abstract: On the electrodeposition of titanium in ionic liquids

Article information

Article type
Paper
Submitted
08 Jan 2008
Accepted
29 Jan 2008
First published
27 Feb 2008

Phys. Chem. Chem. Phys., 2008,10, 2189-2199

On the electrodeposition of titanium in ionic liquids

F. Endres, S. Zein El Abedin, A. Y. Saad, E. M. Moustafa, N. Borissenko, W. E. Price, G. G. Wallace, D. R. MacFarlane, P. J. Newman and A. Bund, Phys. Chem. Chem. Phys., 2008, 10, 2189 DOI: 10.1039/B800353J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements