Issue 13, 2008

Quantum chemical calculations on a selection of iodine-containing species (IO, OIO, INO3, (IO)2, I2O3, I2O4 and I2O5) of importance in the atmosphere

Abstract

The electronic and geometric structures of the title complexes are studied quantum chemically using ab initio and density functional approaches. Coupled cluster calculations at the scalar relativistic (basis set) level are performed, and the results are corrected for spin–orbit coupling using data from relativistic density functional theory studies. The heats of formation (kJ mol−1) at 298 K are found to be: IO3 147.8, INO3 33.1, OIO 110.1, I2O3 64.0, I2O4 111.3, I2O5 33.0, IOIO 141.3, IOOI 179.9 and OI(I)O 157.9. These data are used to draw a number of conclusions regarding three important aspects of iodine chemistry in the marine boundary layer. (i) Although the IO self reaction produces the asymmetric dimer, IOIO, it is unlikely that this species plays a further role in the atmosphere as it is short-lived. (ii) INO3 is sufficiently stable to explain the kinetics of the recombination reaction between IO and NO2, and the reaction between I2 and NO3 to produce I + INO3 is almost certainly the major source of iodine oxides at night. (iii) The higher iodine oxides I2O3 and I2O5 are very stable molecules, by contrast to the OIO dimer, I2O4, which is much less stable but which should still survive long enough in the marine boundary layer to provide a building block for iodine oxide particle formation.

Graphical abstract: Quantum chemical calculations on a selection of iodine-containing species (IO, OIO, INO3, (IO)2, I2O3, I2O4 and I2O5) of importance in the atmosphere

Supplementary files

Additions and corrections

Article information

Article type
Perspective
Submitted
10 Oct 2007
Accepted
08 Jan 2008
First published
31 Jan 2008

Phys. Chem. Chem. Phys., 2008,10, 1723-1733

Quantum chemical calculations on a selection of iodine-containing species (IO, OIO, INO3, (IO)2, I2O3, I2O4 and I2O5) of importance in the atmosphere

N. Kaltsoyannis and J. M. C. Plane, Phys. Chem. Chem. Phys., 2008, 10, 1723 DOI: 10.1039/B715687C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements