Issue 4, 2008

Fluorescence affinity sensing by using a self-contained fluid manoeuvring microfluidic chip

Abstract

An application of a novel polymer microfluidic chip for sample exchange via natural capillary forces for immuno-analysis is described. The microfluidic device was designed to achieve sample replacement by capillary force only, which would therefore be suitable for point-of-care-testing. Complete and automatic replacement of the sample in the reaction chamber with another one makes the chip able to mimic affinity chromatography and immunoassay processes. The microfluidic chip was made using polymer replication techniques, which were suitable for fast and cheap fabrication. Micrometre-sized polystyrene beads were used for the functionalization of biomolecules. Dinitrophenyl (DNP) and anti-DNP antibody coordination was employed on the chip for fluorescence analysis. DNP was immobilized on the polymer beads via a pre-adsorbed dendrimer layer and the beads were placed in the reaction chamber. Fluorescein tagged anti-DNP was successfully observed by a fluorescence microscope after the completion of the entire flow sequence. A calibration curve was registered based on the anti-DNP concentration. A multiplex sensing was accomplished by adding biotin/streptavidin coordination to the system. DNP and biotin conjugated beads were placed in the reaction chamber in an ordered fashion and biospecific bindings of anti-DNP antibody and streptavidin were observed at their expected sites. A ratiometric analysis was carried out with different concentration ratios of anti-DNP/streptavidin. The microfluidic chip described in this work could be applied to various biological and chemical analyses using integrated washing steps or fluid replacement steps with minimum sample handling.

Graphical abstract: Fluorescence affinity sensing by using a self-contained fluid manoeuvring microfluidic chip

Article information

Article type
Paper
Submitted
05 Dec 2007
Accepted
04 Feb 2008
First published
07 Mar 2008

Analyst, 2008,133, 499-504

Fluorescence affinity sensing by using a self-contained fluid manoeuvring microfluidic chip

J. W. Hong, K. H. Chung and H. C. Yoon, Analyst, 2008, 133, 499 DOI: 10.1039/B718750E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements