Issue 9, 2007

Cyclodextrin–hydrophobe complexation in associative polymers

Abstract

We develop a new rheology-based method to study the complexation of cyclodextrins with hydrophobes in hydrophobically modified associative polymer solutions. The associative polymers have comb-like structure with hydrophobic groups randomly attached to the polymer backbone. Intermolecular interactions between the hydrophobic groups form a transient network resulting in thickening of the polymer solutions. On addition of cyclodextrins (CD) to the solution, the hydrophobes are encapsulated within the hydrophobic cavity of the cyclodextrins. This reduces viscoelastic properties of the polymer solution by several orders of magnitude. We exploit the existence of a dynamic equilibrium between CD adsorbed to the hydrophobes and free CD in the solution, to develop a rheology-based Langmuir-type adsorption isotherm for estimating the binding constant for molecular complexation. The model is based on the assumption that the amount of CD adsorbed is proportional to the reduction in elastic modulus of the polymer solution due to the encapsulation of the network junctions by CD. The effects of temperature on binding constant are studied to estimate the enthalpy and entropy of complexation. Experiments are conducted with both α-and β-CD at different polymer concentrations and temperatures to estimate the relative strength of binding of the CDs. At a given temperature and a polymer concentration, α-CD has a lower binding constant compared to that of β-CD, indicating higher affinity of α-CD to adsorb onto the hydrophobes. Since α-CDs have a smaller ring size, they can snugly fit to the hydrophobes and the association leads to higher enthalpy and entropy change.

Graphical abstract: Cyclodextrin–hydrophobe complexation in associative polymers

Article information

Article type
Paper
Submitted
05 Jan 2007
Accepted
04 Jul 2007
First published
20 Jul 2007

Soft Matter, 2007,3, 1185-1193

Cyclodextrin–hydrophobe complexation in associative polymers

S. Mahammad, G. W. Roberts and S. A. Khan, Soft Matter, 2007, 3, 1185 DOI: 10.1039/B700167C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements