Issue 10, 2007

Real-time fluorescence monitoring of phenothiazinium photosensitizers and their anti-mycobacterial photodynamic activity against Mycobacterium bovis BCG in in vitro and in vivo models of localized infection

Abstract

An objective was to explore the photodynamic activity of two cationic photosensitizers (PS) (benzo[a]phenothiazinium chloride and benzo[a]phenoselenazinium chloride) against Mycobacterium bovis BCG both in vitro and in a murine model of BCG-granuloma. The hypothesis being tested in this study was that cationic molecules could best interact with the negatively charged membrane of BCG as a model for mycobacterial infection. Cells in culture were incubated with various concentrations of PS and subsequently illuminated using a 635 nm diode laser. Dark- and light-induced killing profiles were generated as a function of fluence and dye concentration. In vivo, local injection of the PS into subcutaneous Mycobacterium-induced granuloma sites in murine model was followed by red light illumination of the same area. A special microscope was fabricated for real-time in vivo fluorescent microscopy to monitor EtNBS delivery to subcutaneous murine granulomata. Both PS demonstrated good in vitro antimycobacterial photodynamic activity with varying degrees of toxicity under dark conditions. Real time in vivo monitoring of benzophenothiazine chloride in the mouse model indicated that this fluorescent photosensitizer was delivered rapidly to the subcutaneous granuloma site. In vivo, photosensitizer specific dark- and photo-toxicities depended on the structure, concentration of the photosensitizer and the light dose utilized. Cationic phenothiazine photosensitizers are promising candidates for use in anti-mycobacterial PDT for localized diseases such as cutaneous and pulmonary granulomata.

Graphical abstract: Real-time fluorescence monitoring of phenothiazinium photosensitizers and their anti-mycobacterial photodynamic activity against Mycobacterium bovis BCG in in vitro and in vivo models of localized infection

Article information

Article type
Paper
Submitted
25 May 2007
Accepted
02 Aug 2007
First published
16 Aug 2007

Photochem. Photobiol. Sci., 2007,6, 1117-1123

Real-time fluorescence monitoring of phenothiazinium photosensitizers and their anti-mycobacterial photodynamic activity against Mycobacterium bovis BCG in in vitro and in vivo models of localized infection

K. O'Riordan, O. E. Akilov, S. K. Chang, J. W. Foley and T. Hasan, Photochem. Photobiol. Sci., 2007, 6, 1117 DOI: 10.1039/B707962A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements