Issue 9, 2007

Ultrafast light harvesting dynamics in the cryptophyte phycocyanin 645

Abstract

Steady-state and femtosecond time-resolved optical methods have been used to study spectroscopic features and energy transfer dynamics in the soluble antenna protein phycocyanin 645 (PC645), isolated from a unicellular cryptophyte Chroomonas CCMP270. Absorption, emission and polarization measurements as well as one-colour pump–probe traces are reported in combination with complementary quantum chemical calculations of electronic transitions of the bilins. Estimation of bilin spectral positions and energy transfer rates aids in the development of a model for light harvesting by PC645. At higher photon energies light is absorbed by the centrally located dimer (DBV, β50/β61) and the excitation is subsequently funneled through a complex interference of pathways to four peripheral pigments (MBV α19, PCB β158). Those chromophores transfer the excitation energy to the red-most bilins (PCB β82). We suggest that the final resonance energy transfer step occurs between the PCB 82 bilins on a timescale estimated to be ∼15 ps. Such a rapid final energy transfer step cannot be rationalized by calculations that combine experimental parameters and quantum chemical calculations, which predict the energy transfer time to be 40 ps.

Graphical abstract: Ultrafast light harvesting dynamics in the cryptophyte phycocyanin 645

Article information

Article type
Paper
Submitted
03 Apr 2007
Accepted
04 Jul 2007
First published
12 Jul 2007

Photochem. Photobiol. Sci., 2007,6, 964-975

Ultrafast light harvesting dynamics in the cryptophyte phycocyanin 645

T. Mirkovic, A. B. Doust, J. Kim, K. E. Wilk, C. Curutchet, B. Mennucci, R. Cammi, P. M. G. Curmi and G. D. Scholes, Photochem. Photobiol. Sci., 2007, 6, 964 DOI: 10.1039/B704962E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements