Issue 11, 2007

The pressure drop along rectangular microchannels containing bubbles

Abstract

This paper derives the difference in pressure between the beginning and the end of a rectangular microchannel through which a flowing liquid (water, with or without surfactant, and mixtures of water and glycerol) carries bubbles that contact all four walls of the channel. It uses an indirect method to derive the pressure in the channel. The pressure drop depends predominantly on the number of bubbles in the channel at both low and high concentrations of surfactant. At intermediate concentrations of surfactant, if the channel contains bubbles (of the same or different lengths), the total, aggregated length of the bubbles in the channel is the dominant contributor to the pressure drop. The difference between these two cases stems from increased flow of liquid through the “gutters”—the regions of the system bounded by the curved body of the bubble and the corners of the channel—in the presence of intermediate concentrations of surfactant. This paper presents a systematic and quantitative investigation of the influence of surfactants on the flow of fluids in microchannels containing bubbles. It derives the contributions to the overall pressure drop from three regions of the channel: (i) the slugs of liquid between the bubbles (and separated from the bubbles), in which liquid flows as though no bubbles were present; (ii) the gutters along the corners of the microchannels; and (iii) the curved caps at the ends of the bubble.

Graphical abstract: The pressure drop along rectangular microchannels containing bubbles

Supplementary files

Article information

Article type
Paper
Submitted
01 May 2007
Accepted
24 Jul 2007
First published
22 Aug 2007

Lab Chip, 2007,7, 1479-1489

The pressure drop along rectangular microchannels containing bubbles

M. J. Fuerstman, A. Lai, M. E. Thurlow, S. S. Shevkoplyas, H. A. Stone and G. M. Whitesides, Lab Chip, 2007, 7, 1479 DOI: 10.1039/B706549C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements