Issue 38, 2007

Effect of chitosan membrane surface modification via plasma induced polymerization on the adhesion of osteoblast-like cells

Abstract

The surface of solvent cast chitosan membranes was modified using a two-step procedure. Oxygen plasma treatment was used at the first activation step followed by vinyl monomer graft polymerization. Two monomers were used in order to compare the influence of different functional groups on cell adhesion and proliferation; acrylic acid (AA) was used to introduce carboxyl groups and vinyl sulfonic acid (VSA) was used as a source of sulfonic groups. The surface chemistry/energy changes were characterized by means of X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR-ATR), and contact angle measurements. Additionally, alterations in the surface morphology were investigated by scanning electron microscopy (SEM). XPS analyses confirmed the polymer grafting on the surface; an S2s peak appears in the VSA survey spectrum and an O–C[double bond, length as m-dash]O peak emerges in the C1s high resolution spectrum after AA grafting. Moreover, contact angle measurements showed an increment in the values of the surface energy polar and Lewis base components for all treated samples, confirming the introduction of additional polar groups by the modification processes. FTIR-ATR spectra showed no significant difference between treated and original materials. These results confirmed that only the very top (a few angstroms) surface layer, but not the bulk of the material, was modified. The effect of modification on the adhesion and proliferation of osteoblast-like cells was studied on a preliminary basis. Direct contact tests were performed using a human osteosarcoma cell line (SaOs-2). Cell morphology (optical microscopy and SEM) and cell viability (MTS test) were evaluated for untreated and surface modified membranes. The results revealed that both plasma treatment, and the presence of sulfonic groups on the surface of chitosan membranes, improve SaOs-2 adhesion and proliferation when compared to untreated or AA-grafted membranes. This effect was strongly related to the polar and Lewis basic components of the total surface energy.

Graphical abstract: Effect of chitosan membrane surface modification via plasma induced polymerization on the adhesion of osteoblast-like cells

Article information

Article type
Paper
Submitted
15 May 2007
Accepted
03 Aug 2007
First published
21 Aug 2007

J. Mater. Chem., 2007,17, 4064-4071

Effect of chitosan membrane surface modification via plasma induced polymerization on the adhesion of osteoblast-like cells

P. M. López-Pérez, A. P. Marques, R. M. P. D. Silva, I. Pashkuleva and R. L. Reis, J. Mater. Chem., 2007, 17, 4064 DOI: 10.1039/B707326G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements