Issue 21, 2007

The long and short of it: the influence of N-carboxyethyl versusN-carboxymethyl pendant arms on in vitro and in vivo behavior of copper complexes of cross-bridged tetraaminemacrocycles

Abstract

A cross-bridged cyclam ligand bearing two N-carboxymethyl pendant arms (1) has been found to form a copper(II) complex that exhibits significantly improved biological behavior in recent research towards 64Cu-based radiopharmaceuticals. Both the kinetic inertness and resistance to reduction of Cu–1 are believed to be relevant to its enhanced performance. To explore the influence of pendant arm length on these properties, new cross-bridged cyclam and cyclen ligands with longer N-carboxyethyl pendant arms, 2 and 4, and their respective copper(II) complexes have been synthesized. Both mono- as well as di-O-protonated forms of Cu–2 have also been isolated and structurally characterized. The spectral and structural properties of Cu–2 and Cu–4, their kinetic inertness in 5 M HCl, and electrochemical behavior have been obtained and compared to those of their N-carboxymethyl-armed homologs, Cu–1 and Cu–3. Only the cyclam-based Cu–1 and Cu–2 showed unusually high kinetic inertness towards acid decomplexation. While both of these complexes also exhibited quasi-reversible Cu(II)/Cu(I) reductions, Cu–2 is easier to reduce by a substantial margin of +400 mV, bringing it within the realm of physiological reductants. Similarly, of the cyclen-based complexes, Cu–4 is also easier to reduce than Cu–3 though both reductions are irreversible. Biodistribution studies of 64Cu-labeled 2 and 4 were performed in Sprague Dawley rats. Despite comparable acid inertness to their shorter-armed congeners, both longer-armed ligand complexes have poorer bio-clearance properties. This inferior in vivo behavior may be a consequence of their higher reduction potentials.

Graphical abstract: The long and short of it: the influence of N-carboxyethyl versusN-carboxymethyl pendant arms on in vitro and in vivo behavior of copper complexes of cross-bridged tetraamine macrocycles

Supplementary files

Article information

Article type
Paper
Submitted
01 Mar 2007
Accepted
29 Mar 2007
First published
16 Apr 2007

Dalton Trans., 2007, 2150-2162

The long and short of it: the influence of N-carboxyethyl versusN-carboxymethyl pendant arms on in vitro and in vivo behavior of copper complexes of cross-bridged tetraamine macrocycles

K. J. Heroux, K. S. Woodin, D. J. Tranchemontagne, P. C. B. Widger, E. Southwick, E. H. Wong, G. R. Weisman, S. A. Tomellini, T. J. Wadas, C. J. Anderson, S. Kassel, J. A. Golen and A. L. Rheingold, Dalton Trans., 2007, 2150 DOI: 10.1039/B702938A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements