Issue 18, 2007

Structural, electrochemical and oxygen atom transfer properties of a molybdenum selenoether complex [Mo2O4(OC3H6SeC3H6O)2] and its thioether analogue [Mo2O4(OC3H6SC3H6O)2]

Abstract

The first crystallographically characterized molybdenum(VI) selenoether complex [Mo2O4(OC3H6SeC3H6O)2] and its thioether analogue [Mo2O4(OC3H6SC3H6O)2] were synthesised. Their structural, electrochemical and oxygen atom transfer properties are compared. This is relevant for the molybdenum cofactors of the DMSO reductase family where the coordination of the active site metal occurs through O (serine/aspartate), S (cysteine) or Se (selenocysteine). Both structures are almost identical except for those parameters that are directly derived from the different sizes of the varied ligand atoms (Se and S). No trans influence was observed. The metal centered redox process (MoV↔MoVI) is at slightly lower voltage for the sulfur than for the selenium complex. The selenium compound catalyses the oxygen atom transfer from DMSO to PPh3 by a different mechanism and at a higher rate than the sulfur compound, which is an indication that cysteine and selenocysteine might be used for a purpose in the different molybdenum and tungsten cofactors.

Graphical abstract: Structural, electrochemical and oxygen atom transfer properties of a molybdenum selenoether complex [Mo2O4(OC3H6SeC3H6O)2] and its thioether analogue [Mo2O4(OC3H6SC3H6O)2]

Supplementary files

Article information

Article type
Paper
Submitted
04 Dec 2006
Accepted
14 Feb 2007
First published
16 Mar 2007

Dalton Trans., 2007, 1773-1780

Structural, electrochemical and oxygen atom transfer properties of a molybdenum selenoether complex [Mo2O4(OC3H6SeC3H6O)2] and its thioether analogue [Mo2O4(OC3H6SC3H6O)2]

X. Ma, C. Schulzke, H. Schmidt and M. Noltemeyer, Dalton Trans., 2007, 1773 DOI: 10.1039/B617652F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements