Issue 15, 2007

Carbon materials for supercapacitor application

Abstract

The most commonly used electrode materials for electrochemical capacitors are activated carbons, because they are commercially available and cheap, and they can be produced with large specific surface area. However, only the electrochemically available surface area is useful for charging the electrical double layer (EDL). The EDL formation is especially efficient in carbon pores of size below 1 nm because of the lack of space charge and a good attraction of ions along the pore walls. The pore size should ideally match the size of the ions. However, for good dynamic charge propagation, some small mesopores are useful. An asymmetric configuration, where the positive and negative electrodes are constructed from different materials, e.g., activated carbon, transition metal oxide or conducting polymer, is of great interest because of an important extension of the operating voltage. In such a case, the energy as well as power is greatly increased. It appears that nanotubes are a perfect conducting additive and/or support for materials with pseudocapacitance properties, e.g. MnO2, conducting polymers. Substitutional heteroatoms in the carbon network (nitrogen, oxygen) are a promising way to enhance the capacitance. Carbons obtained by one-step pyrolysis of organic precursors rich in heteroatoms (nitrogen and/or oxygen) are very interesting, because they are denser than activated carbons. The application of a novel type of electrolyte with a broad voltage window (ionic liquids) is considered, but the stability of this new generation of electrolyte during long term cycling of capacitors is not yet confirmed.

Graphical abstract: Carbon materials for supercapacitor application

Article information

Article type
Invited Article
Submitted
12 Dec 2006
Accepted
29 Jan 2007
First published
07 Mar 2007

Phys. Chem. Chem. Phys., 2007,9, 1774-1785

Carbon materials for supercapacitor application

E. Frackowiak, Phys. Chem. Chem. Phys., 2007, 9, 1774 DOI: 10.1039/B618139M

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements