Issue 18, 2007

Controlling crystallization and its absence: proteins, colloids and patchy models

Abstract

The ability to control the crystallization behaviour (including its absence) of particles, be they biomolecules such as globular proteins, inorganic colloids, nanoparticles, or metal atoms in an alloy, is of both fundamental and technological importance. Much can be learnt from the exquisite control that biological systems exert over the behaviour of proteins, where protein crystallization and aggregation are generally suppressed, but where in particular instances complex crystalline assemblies can be formed that have a functional purpose. We also explore the insights that can be obtained from computational modelling, focussing on the subtle interplay between the interparticle interactions, the preferred local order and the resulting crystallization kinetics. In particular, we highlight the role played by “frustration”, where there is an incompatibility between the preferred local order and the global crystalline order, using examples from atomic glass formers and model anisotropic particles.

Graphical abstract: Controlling crystallization and its absence: proteins, colloids and patchy models

Article information

Article type
Invited Article
Submitted
16 Oct 2006
Accepted
22 Dec 2006
First published
23 Jan 2007

Phys. Chem. Chem. Phys., 2007,9, 2197-2205

Controlling crystallization and its absence: proteins, colloids and patchy models

J. P. K. Doye, A. A. Louis, I. Lin, L. R. Allen, E. G. Noya, A. W. Wilber, H. C. Kok and R. Lyus, Phys. Chem. Chem. Phys., 2007, 9, 2197 DOI: 10.1039/B614955C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements