Nanoscale aryleneethynylene oligomers incorporating fluorenone units as electron-dopable molecular wires
Abstract
The first general synthetic procedures to obtain fluorenone-containing aryleneethynylene oligomers have been developed. The strategy involves stepwise Sonogashira cross-coupling methodology, with 2,7-diethynylfluorenone and 1,4-diiodo-2,6-di(hexyloxy)benzene as key building blocks, with terminal benzenethiol functionality protected as cyanoethyl derivatives. A second family of compounds contains a central 9-[(4-pyridyl)methylene]fluorene or 9-[di(4-pyridyl)methylene]fluorene unit in the backbone. UV-Vis absorption studies in solution establish that the increase of molecular lengths from ca. 4 nm (compounds 15 and 16) to ca. 7 nm (compounds 17, 27 and 28) results in only a very small red shift, with the effective conjugation length slightly longer than that of the 1,4-di(phenylethynyl)benzene (PEPEP) subunits. The pyridyl groups in 27 and 28 are only weakly conjugated to the π-electron backbone (UV-Vis data) which is consistent with the twisted conformation observed in the X-ray crystal structures of model compounds 20 and 24. Cyclic voltammetric studies reveal that the reduction waves of the fluorenone, 9-[(4-pyridyl)methylene]fluorene and 9-[di(4-pyridyl)methylene]fluorene units endow these oligomers with n-doping characteristics, with reversible reduction waves being observed for some compounds. The new aryleneethynylene oligomers have potential applications as molecular wires in practical devices.
Please wait while we load your content...