Volume 132, 2006

SERS platforms for high density DNA arrays

Abstract

Surface Enhanced Raman Scattering (SERS) gives rise to analytical applications with much promise. In our approach three steps are necessary. We require a SERS platform of high enhancement. This has been achieved using the special technique of Island Lithography, combined with Ag deposition by galvanic exchange, yielding an enhancement factor of 108. Probe oligonucleotide molecules are attached to a specific area on the platform, at the optimized surface concentration, using thiolated single stranded (ss) DNA molecules. The optimum surface concentration has been determined and interpreted in the light of the polyelectrolyte behaviour of ssDNA. Finally the change in SERS produced by hybridisation of the probe molecules to a target DNA molecule is measured. Highly discernible changes have been obtained. No change in probe signal is seen when presented with one base mismatched target. From this work it is concluded that the prospects for label-free DNA detection in high-density arrays is now close to achievement.

Article information

Article type
Paper
Submitted
10 May 2005
Accepted
23 Jun 2005
First published
17 Oct 2005

Faraday Discuss., 2006,132, 269-280

SERS platforms for high density DNA arrays

M. Green, F. Liu, L. Cohen, P. Köllensperger and T. Cass, Faraday Discuss., 2006, 132, 269 DOI: 10.1039/B506636K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements