As part of a large epidemiologic study of lung cancer, 55 000 subjects, we have conducted a nation-wide survey of particulate exposures in the US trucking industry. The goal is to differentiate the risks from various types of particulate exposures, such as traffic emissions and general air pollution. We hypothesize that exposures defined by job and work site characteristics can be linked with subjects using their personal job histories. This report covers exposures at 36 randomly chosen large truck freight terminals in the US. Measurements were made of PM2.5, elemental carbon (EC), and organic carbon (OC) upwind of the terminal (background) and in work areas, and by personal samples. Significant differences in exposure intensity, μg m−3, were found for work locations and jobs relative to background levels (GM[GSD]) at terminal sites: PM2.5 9.8[2.34], EC 0.5[3.24], and OC 5.0[1.76]. Using EC as a marker for diesel particles, work locations varied significantly: office 0.3[3.7], dock area 0.7[2.89] and shop area 1.5[3.52]), as did job titles (non-smokers): clerk 0.1[9.98], dock worker 0.8[2.13], and mechanic 2.0[3.82]. Cigarette smoking contributed substantially to personal exposures, approximately doubling PM2.5 and OC, but having less of an effect on EC. Large differences were seen across the terminal sites due to differences in local regional air pollution levels from traffic and other sources. We conclude that it will be possible to estimate current exposures of the cohort using an exposure assignment matrix based on job title, work location, and terminal site. This distribution overlaps substantially with the general public’s exposure to these sources.