Issue 1, 2005

Aspergillazines A–E: novel heterocyclic dipeptides from an Australian strain of Aspergillus unilateralis

Abstract

Biological and chemical profiling of an Australian strain of the fungus Aspergillus unilateralis (MST-F8675), isolated from a soil sample collected near Mount Isa, Queensland, revealed a complex array of metabolites displaying broad chemotherapeutic properties. Noteworthy among these metabolites were a unique series of highly modified dipeptides aspergillazines A–E, incorporating a selection of unprecedented and yet biosynthetically related heterocyclic systems. Co-occurring with the aspergillazines was the recently described marine-derived fungal metabolite trichodermamide A (cf. penicillazine), whereas re-fermentation of A. unilateralis in NaCl (1%) enriched media resulted in co-production of the only other known example of this structure class, the marine-derived fungal metabolite trichodermamide B. Further investigation of A. unilateralis returned the known terrestrial fungal metabolite viridicatumtoxin as the cytotoxic and antibacterial principle, together with E-2-decenedioic acid, ferulic acid, (7E,7′E)-5,5′-diferulic acid and (7E,7′E)-8,5′-diferulic acid. The aromatic diacids have previously been reported from the chemical and enzymatic (esterase) treatment of plant cell wall material, with their isolation from A. unilateralis being their first apparent reported occurrence as natural products. Structures for all metabolites were determined by detailed spectroscopic analysis and, where appropriate, comparison to literature data and/or authentic samples.

Graphical abstract: Aspergillazines A–E: novel heterocyclic dipeptides from an Australian strain of Aspergillus unilateralis

Article information

Article type
Paper
Submitted
03 Sep 2004
Accepted
28 Oct 2004
First published
29 Nov 2004

Org. Biomol. Chem., 2005,3, 123-129

Aspergillazines A–E: novel heterocyclic dipeptides from an Australian strain of Aspergillus unilateralis

R. J. Capon, R. Ratnayake, M. Stewart, E. Lacey, S. Tennant and J. H. Gill, Org. Biomol. Chem., 2005, 3, 123 DOI: 10.1039/B413440K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements