Issue 5-6, 2005

Oxidised guanidinohydantoin (Ghox) and spiroiminodihydantoin (Sp) are major products of iron- and copper-mediated 8-oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2′-deoxyguanosine oxidation

Abstract

8-Oxo-7,8-dihydroguanine (8-oxoGua), an important biomarker of DNA damage in oxidatively generated stress, is highly reactive towards further oxidation. Much work has been carried out to investigate the oxidation products of 8-oxoGua by one-electron oxidants, singlet oxygen, and peroxynitrite. This report details for the first time, the iron- and copper-mediated Fenton oxidation of 8-oxoGua and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo). Oxidised guanidinohydantoin (Ghox) was detected as the major product of oxidation of 8-oxoGua with iron or copper and hydrogen peroxide, both at pH 7 and pH 11. Oxaluric acid was identified as a final product of 8-oxoGua oxidation. 8-oxodGuo was subjected to oxidation under the same conditions as 8-oxoGua. However, dGhox was not generated. Instead, spiroiminodihydantoin (Sp) was detected as the major product for both iron and copper mediated oxidation at pH 7. It was proposed that the oxidation of 8-oxoGua was initiated by its one-electron oxidation by the metal species, which leads to the reactive intermediate 8-oxoGua˙+, which readily undergoes further oxidation. The product of 8-oxoGua and 8-oxodGuo oxidation was determined by the 2′-deoxyribose moiety of the 8-oxodGuo, not whether copper or iron was the metal involved in the oxidation.

Graphical abstract: Oxidised guanidinohydantoin (Ghox) and spiroiminodihydantoin (Sp) are major products of iron- and copper-mediated 8-oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2′-deoxyguanosine oxidation

Article information

Article type
Paper
Submitted
18 Aug 2005
Accepted
12 Oct 2005
First published
25 Oct 2005

Mol. BioSyst., 2005,1, 373-381

Oxidised guanidinohydantoin (Ghox) and spiroiminodihydantoin (Sp) are major products of iron- and copper-mediated 8-oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2′-deoxyguanosine oxidation

B. White, M. C. Tarun, N. Gathergood, J. F. Rusling and M. R. Smyth, Mol. BioSyst., 2005, 1, 373 DOI: 10.1039/B511756A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements