Issue 12, 2005

The autofluorescence of plastic materials and chips measured under laser irradiation

Abstract

Plastic materials have the potential to substitute for glass substrates used in microfluidic and μTAS systems adding flexibility in materials' choices. Optical quality plastic materials with a low autofluorescence are crucial for optimal detection by fluorescence and laser induced fluorescence techniques. This paper summarizes a series of optical investigations on commercially available plastic chip materials (PMMA, COC, PC, PDMS) and chips made from those materials. Intrinsic optical constants of plastic materials—refractive index for bulk materials—determined by spectroscopic ellipsometry and transmission spectroscopy in the visible range are presented. The laser-induced autofluorescence of materials and chips was assessed at four laser wavelengths, namely, 403, 488, 532 and 633 nm. Considerable bleaching of the autofluorescence was observed under continuous laser illumination. Overall, the longer wavelength laser excitation sources yielded less autofluorescence. PDMS exhibited the least autofluorescence and was comparable to BoroFloat glass. In all cases, chips exhibited slightly higher autofluorescence than the raw plastic materials from which they had been made.

Graphical abstract: The autofluorescence of plastic materials and chips measured under laser irradiation

Article information

Article type
Paper
Submitted
13 Jun 2005
Accepted
10 Oct 2005
First published
01 Nov 2005

Lab Chip, 2005,5, 1348-1354

The autofluorescence of plastic materials and chips measured under laser irradiation

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman, P. A. Limbach and C. J. Seliskar, Lab Chip, 2005, 5, 1348 DOI: 10.1039/B508288A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements