Issue 45, 2005

Amorphous aluminium fluoride as new matrix for vanadium-containing catalysts

Abstract

A new sol–gel technique was developed for preparing vanadium-containing aluminium fluoride catalysts for selective oxidation reactions. With this new synthesis, highly dispersed vanadium species can be obtained in the metal fluoride host lattice. The X-ray amorphous solids were investigated by conventional and advanced analytical methods such as for instance N2 adsorption experiments, FTIR spectroscopy, pyridine adsorption and NH3-TPD. The surface properties, acidity and catalytic performance were all dependent on the vanadium content of the samples. EDX, FTIR and Raman spectroscopy confirmed the high degree of dispersion of vanadium (oxidation state: III or IV or both) species in the aluminium fluoride matrix. The samples had relatively high BET surface areas and medium strength Lewis acid sites. Additional Brønsted acid sites were observed on samples with higher vanadium contents only. The catalytic performance of the vanadium-containing aluminium fluorides was investigated for the oxidative dehydrogenation (ODH) of propane. Depending on the vanadium content, the new catalyst system offers a surprisingly high catalytic activity and selectivity towards the desired product, propylene. The high degree of dispersion of the active vanadium species in the aluminium fluoride matrix and the type of the acid sites on the solid surface are crucial to the selectivity of the catalyst in the selective oxidation reaction.

Graphical abstract: Amorphous aluminium fluoride as new matrix for vanadium-containing catalysts

Article information

Article type
Paper
Submitted
15 Jun 2005
Accepted
08 Sep 2005
First published
05 Oct 2005

J. Mater. Chem., 2005,15, 4845-4853

Amorphous aluminium fluoride as new matrix for vanadium-containing catalysts

K. Scheurell and E. Kemnitz, J. Mater. Chem., 2005, 15, 4845 DOI: 10.1039/B508510A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements