A new Aurivillius phase (generic formula M2An−1BnO3n+3) has been synthesized with n
= 3 and containing manganese, Bi2Sr1.4La0.6Nb2MnO12. The structure has been investigated by X-ray and neutron powder diffraction and found to be tetragonal (I4/mmm) at temperatures down to 2 K, with a
= 3.89970(7)
Å, c
= 32.8073(9)
Å at 2 K. There is significant cation disorder between Bi3+
(predominantly on the M sites) and Sr2+ and La3+ which prefer the A sites: 19(2)% of Bi3+ occupy the A sites. This disorder, leading to occupancy of M sites by Sr2+, is thought to relieve strain due to size-mismatch between the fluorite-like and perovskite-like blocks. A high level of order exists between Mn and Nb on the B sites, with Mn located predominantly (76.1(6)%) in the central B site whilst Nb preferentially occupies the lower symmetry, outer B site, where it undergoes an out-of-centre displacement towards the fluorite-like blocks. Magnetic measurements indicate that this material displays spin-glass behaviour on cooling. Synthesis of the Mn4+ analogue Bi2Sr2Nb2MnO12 was unsuccessful, possibly due to the small size of the Mn4+ cation.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?