Issue 7, 2005

Synthesis and reactivity studies of a manganese ‘microperoxidase’ containing b-type heme

Abstract

Mn(III)protoporphyrin IX-6(7)-gly-gly-his methyl ester (MnGGH) has been prepared by condensation of glycyl-glycyl-L-histidine methyl ester with the propionic side chains of Mn(III)protoporphyrin IX. It was characterised by mass spectrometry and UV/VIS spectroscopy. Stopped-flow spectrophotometry was used to study the reaction of the Mn ‘microperoxidase’ with hydrogen peroxide. The formation of active intermediates analogous to previously described metal–hydroperoxo (compound 0) and metal–oxo (compound I) intermediates of the ‘natural’ Fe(III) microperoxidase-8 and Mn(III) microperoxidase-8 was observed. The rate of formation of the MnGGH-based compound I analogue was found to increase dramatically with increasing pH. A steady-state kinetic analysis of the catalytic peroxidase activity of MnGGH towards K4[Fe(CN)6], L-tyrosine methyl ester, o-dianisidine, o-methoxyphenol and ascorbic acid showed that the peroxidase reaction proceeds via the formation of a microperoxidase–substrate complex followed by electron transfer from the substrate to the metal. The reactivity of MnGGH depends on the size and hydrophobicity of the substrate, and these properties appear to influence the rate of the electron transfer, which is the rate-limiting step for the whole process. MnGGH showed higher reactivity towards reducing substrates than its Fe(III) analogue.

Graphical abstract: Synthesis and reactivity studies of a manganese ‘microperoxidase’ containing b-type heme

Supplementary files

Article information

Article type
Paper
Submitted
15 Nov 2004
Accepted
27 Jan 2005
First published
02 Mar 2005

Dalton Trans., 2005, 1228-1233

Synthesis and reactivity studies of a manganese ‘microperoxidase’ containing b-type heme

E. S. Ryabova and E. Nordlander, Dalton Trans., 2005, 1228 DOI: 10.1039/B417331G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements