Issue 3, 2005

Rotational spectrum, structure and modeling of the OCS–CS2 van der Waals dimer

Abstract

The rotational spectrum of a 1 : 1 weakly bound complex between OCS and CS2 has been measured by Fourier-transform microwave spectroscopy, giving ground state rotational constants of A = 2369.6942(9) MHz, B = 994.4467(6) MHz and C = 700.5137(3) MHz for the normal isotopic species. The experimental dipole moment components are μa = 0.2893(4) D and μb = 0.6364(27) D, with μtotal = 0.6991(25) D. The rotational constants and dipole moment components are consistent with a structure of Cs symmetry, in which the CS2 and OCS monomers are aligned almost parallel to one another, with a center of mass separation of 3.8017(2) Å. This structure is in good agreement with the lowest energy geometry obtained from an ab initio calculation at the MP2/6-311++G(2d,2p) level which predicts rotational constants of A = 2322 MHz, B = 1036 MHz and C = 716 MHz and dipole moment components of μa = 0.32 D and μb = 0.69 D. Semi-empirical modeling using the ORIENT program gives similarly good agreement, although the predicted rotational constants and dipole moment are a little further from the experimental results (A = 2458 MHz, B = 1027 MHz and C = 725 MHz and μa = 0.34 D and μb = 0.68 D).

Graphical abstract: Rotational spectrum, structure and modeling of the OCS–CS2 van der Waals dimer

Article information

Article type
Paper
Submitted
27 Sep 2004
Accepted
24 Dec 2004
First published
10 Jan 2005

Phys. Chem. Chem. Phys., 2005,7, 487-492

Rotational spectrum, structure and modeling of the OCS–CS2 van der Waals dimer

J. J. Newby, M. M. Serafin, R. A. Peebles and S. A. Peebles, Phys. Chem. Chem. Phys., 2005, 7, 487 DOI: 10.1039/B414897E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements