Issue 10, 2004

Conformationally tailored N-[(2-methyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl)carbonyl]proline templates as molecular tools for the design of peptidomimetics. Design and synthesis of fibrinogen receptor antagonists

Abstract

The proline peptide bond was shown by 2D proton NMR studies to exist exclusively in the trans conformation in benzyl (2S)-1-{[(2S)-2-methyl-6-nitro-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl]carbonyl}-2-pyrrolidinecarboxylate [(S,S)-11], benzyl (2S)-1-{[(2S)-2-methyl-7-nitro-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl]carbonyl}-2-pyrrolidinecarboxylate [(S,S)-9], and in the corresponding 6-amino and 7-amino carboxylic acids (S,S)-3 and (S,S)-4. On the other hand, the diastereomers (R,S)-11 and (R,S)-9 containing an (R) [2-methyl-6/7-nitro-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl]carbonyl moiety, and the diastereoisomers (R,S)-3 and (R,S)-4 incorporating an (R) [6/7-amino-2-methyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl]carbonyl moiety were found to exist as equilibria of trans (63–83%) and cis (17–37%) isomers. These conformationally defined templates were applied in the construction of RGD mimetics possessing antagonistic activity at the platelet fibrinogen receptor.

Graphical abstract: Conformationally tailored N-[(2-methyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl)carbonyl]proline templates as molecular tools for the design of peptidomimetics. Design and synthesis of fibrinogen receptor antagonists

Supplementary files

Article information

Article type
Paper
Submitted
13 Jan 2004
Accepted
22 Mar 2004
First published
22 Apr 2004

Org. Biomol. Chem., 2004,2, 1511-1517

Conformationally tailored N-[(2-methyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl)carbonyl]proline templates as molecular tools for the design of peptidomimetics. Design and synthesis of fibrinogen receptor antagonists

P. Štefanič, Z. Simončič, M. Breznik, J. Plavec, M. Anderluh, E. Addicks, A. Giannis and D. Kikelj, Org. Biomol. Chem., 2004, 2, 1511 DOI: 10.1039/B400490F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements