Jump to main content
Jump to site search

Issue 2, 2004
Previous Article Next Article

Acoustic control of suspended particles in micro fluidic chips

Author affiliations

Abstract

A method to separate suspended particles from their medium in a continuous mode at microchip level is described. The method combines an ultrasonic standing wave field with the extreme laminar flow properties obtained in a silicon micro channel. The channel was 750 µm wide and 250 µm deep with vertical side walls defined by anisotropic wet etching. The suspension comprised “Orgasol 5µm” polyamide spheres and distilled water. The channel was perfused by applying an under pressure (suction) to the outlets. The channel was ultrasonically actuated from the back side of the chip by a piezoceramic plate. When operating the acoustic separator at the fundamental resonance frequency the acoustic forces were not strong enough to focus the particles into a well defined single band in the centre of the channel. The frequency was therefore changed to about 2 MHz, the first harmonic with two pressure nodes in the standing wave, and consequently two lines of particles were formed which were collected via the side outlets. Two different microchip separator designs were investigated with exit channels branching off from the separation channel at angles of 90° and 45° respectively. The 45° separator displayed the most optimal fluid dynamic properties and 90% of the particles were gathered in 2/3 of the original fluid volume.

Back to tab navigation

Publication details

The article was received on 24 Oct 2003, accepted on 11 Dec 2003 and first published on 09 Feb 2004


Article type: Paper
DOI: 10.1039/B313493H
Citation: Lab Chip, 2004,4, 131-135
  •   Request permissions

    Acoustic control of suspended particles in micro fluidic chips

    A. Nilsson, F. Petersson, H. Jönsson and T. Laurell, Lab Chip, 2004, 4, 131
    DOI: 10.1039/B313493H

Search articles by author

Spotlight

Advertisements