Issue 3, 2004

Reduction of UH+ formation for 236U/238U isotope ratio measurements at ultratrace level in double focusing sector field ICP-MS using D2O as solvent

Abstract

The main factors affecting the accurate and precise determination of 236U using ICP-MS are instrumental background, the isobaric interference of 235UH+ molecular ion on 236U+ analyte ions, and the presence of 238U+ and 235U+ peak tails. An optimized analytical method for attenuating the influence of these factors on uranium isotope ratio measurements at ultratrace level of environmental samples has been developed. In order to reduce 235UH+ formation, D2O (heavy water) is used as a solvent for the dissolution and dilution of uranium samples. Abundance sensitivity was improved by use of medium mass resolution (mm = 4450) in comparison with low mass resolution in double-focusing sector field ICP-MS (ICP-SFMS). For solution introduction the performances of several different sample introduction systems (Meinhard, Aridus and ultrasonic nebulizer) were studied. It has been shown, that for all nebulization systems, a diminution in UH+/U+ is observed in D2O as compared with H2O as solvent. Optimum results were obtained in ICP-SFMS for a desolvating microconcentric nebulizer system (Aridus) with a minimum hydride formation rate of 9 × 10−7 and a limit for 236U/238U isotopic ratio measurements of 3 – 5 × 10−7. A comparison was performed of three commercially available sector field ICP-MS devices, with good agreement found between single collector and multiple collector ICP-MS (MC-ICP-MS).

Additions and corrections

Article information

Article type
Paper
Submitted
10 Nov 2003
Accepted
05 Jan 2004
First published
13 Feb 2004

J. Anal. At. Spectrom., 2004,19, 362-367

Reduction of UH+ formation for 236U/238U isotope ratio measurements at ultratrace level in double focusing sector field ICP-MS using D2O as solvent

M. V. Zoriy, L. Halicz, M. E. Ketterer, C. Pickhardt, P. Ostapczuk and J. S. Becker, J. Anal. At. Spectrom., 2004, 19, 362 DOI: 10.1039/B314456A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements