Jump to main content
Jump to site search

Volume 125, 2004
Previous Article Next Article

Structure of assemblies of metal nanowires in mesoporous alumina membranes studied by EXAFS, XANES, X-ray diffraction and SAXS

Author affiliations

Abstract

Mesoporous alumina membranes (“anodic aluminium oxide”, or “AAO”) are made by anodic oxidation of aluminium metal. These membranes contain hexagonal arrays of parallel non-intersecting cylindrical pores perpendicular to the membrane surface. By varying the anodisation voltage, the pore diameters are controllable within the range 5–250 nm. We have used AAO membranes as templates for the electrochemical deposition of metals within the pores to produce nanowires. These represent assemblies of one-dimensional quantum wires with prospective applications in electronic, optoelectronic and magnetic devices. Detailed characterisation of the structures of these nanowire assemblies on a variety of length scales is essential to understand their physical properties and evaluate their possible applications. We have used EXAFS, XANES, WAXS, high energy X-ray diffraction and SAXS to study their structure and bonding. In this paper we report the results of our studies of four different nanowire systems supported in AAO membranes. These are the ferromagnetic metals iron and cobalt, the superconducting metal tin, and the semiconductor gallium nitride. Iron nanowires in pores of diameter over the range 12 nm–72 nm are structurally very similar to bcc bulk iron. They have a strong preferred orientation within the alumina pores. Their XANES shows significant differences from that of bulk iron, showing that the electronic structure of the iron nanowires depends systematically on their diameter. Cobalt nanowires are composed of a mixture of hcp and fcc phases, but the ratio of the two phases does not depend in a simple way on the pore diameter or preparation conditions. In bulk cobalt, the fcc β-phase is normally stable only at high temperatures. Strong preferred orientation of the c-axis in the pores was found. Tin nanowires in alumina membranes with pores diameters between 12 nm and 72 nm have a tetragonal β-structure at ambient temperature and also at 80 K. Magnetic susceptibility measurements show that they are diamagnetic, and become superconducting at the same temperature as bulk tin (3.7 K). Gallium nitride nanowires have been prepared in alumina membranes with pore diameter 24 nm by a novel method. Gallium nitrate was deposited in the pores from aqueous solution and thermolysed at 1000 °C to form Ga2O3, which was reacted with ammonia at 1000 °C. The GaN nanowires have the wurtzite structure. Preparation at 1150 °C led to the incorporation of aluminium in the GaN. The mesoscopic ordering of the pores in the AAO membranes and their filling by metal nanowires has been studied by SAXS, which shows patterns of Bragg peaks arising from the pore arrays. Additionally, the cobalt nanowires have been the subject of an initial ASAXS study.

Back to tab navigation

Publication details

The article was received on 07 Apr 2003, accepted on 14 May 2003 and first published on 07 Aug 2003


Article type: Paper
DOI: 10.1039/B303898J
Citation: Faraday Discuss., 2004,125, 327-342
  •   Request permissions

    Structure of assemblies of metal nanowires in mesoporous alumina membranes studied by EXAFS, XANES, X-ray diffraction and SAXS

    R. E. Benfield, D. Grandjean, J. C. Dore, H. Esfahanian, Z. Wu, M. Kröll, M. Geerkens and G. Schmid, Faraday Discuss., 2004, 125, 327
    DOI: 10.1039/B303898J

Search articles by author

Spotlight

Advertisements