Issue 8, 2004

Transport properties in a family of dialkylimidazolium ionic liquids

Abstract

The transport properties of 1,3-methylalkylimidazolium based ionic liquids are sensitive to their chemical structure. In this work, two key features of the chemical structure were investigated: the role of the anion and the length of the alkyl chain. Four different anions were examined for the 1,3-methylethylimidazolium salt (MeEtImX): bromide (Br), iodide (I), trifluoromethanesulfonate (Tf) and bis(trifluoromethanesulfonyl)amide (NTf2) anions. Increasing the size of the anion resulted in a decrease of the melting point and a slight increase in the cation diffusion coefficient. The differences in cation diffusion behaviour reflect the differences in viscosity, with much higher viscosities expected for the halide salts. In contrast to this diffusion behaviour, the melt conductivities are all very similar. The inconsistency between the calculated conductivity (based on diffusion measurements) and the conductivity measured, however, is attributed to correlated ion motions and/or the diffusion of neutral species that do not contribute to the conductivity. The effect of the length of the alkyl substituent was also studied for 1,3-methylalkylimidazolium iodide (MeRImI). Increasing the length of the alkyl chain, from methyl to a linear heptyl chain, suppresses the melting point and decreases both the conductivity and cation diffusion coefficients. In this case, the viscosity, as well as the size of the cation, influence ion transport in these materials.

Article information

Article type
Paper
Submitted
04 Dec 2003
Accepted
09 Feb 2004
First published
09 Mar 2004

Phys. Chem. Chem. Phys., 2004,6, 1758-1765

Transport properties in a family of dialkylimidazolium ionic liquids

H. A. Every, A. G. Bishop, D. R. MacFarlane, G. Orädd and M. Forsyth, Phys. Chem. Chem. Phys., 2004, 6, 1758 DOI: 10.1039/B315813F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements