Issue 12, 2004

Exciton dynamics in ring-like photosynthetic light-harvesting complexes: a hopping model

Abstract

Excitation localization and dynamics in circular molecular aggregates is considered. It is shown that the Anderson localization of the excitons is taking place even in the finite size of the ring-type systems containing tens of pigments in the case of comparable values of the spectral inhomogeneity and of the intermolecular resonance interaction. The second type of localization comes from the dynamical disorder caused by exciton interactions with environment fluctuations. Because of these two reasons the hopping type migration of the small-size excitons is postulated to be responsible for the excitation dynamics in this kind of systems. This process is considered for the ensemble of independent rings and for the array of the interacting rings by means of Monte Carlo simulations. The intra-ring and inter-ring energy disorder with possible correlations is accepted in simulations performed for the cases of high and low temperatures. It is shown that for the typical parameters of the peripheral light-harvesting pigment-protein complexes LH2 of photosynthetic bacteria the excitation population reaches equilibrium within 1 ps in the case of the disconnected rings at nonselective excitation conditions, while equilibration on longer time scale is taking place in the system of connected rings. This nonexponential relaxation kinetics is observed at room temperature and is more pronounced by lowering the temperature. In the case of selective excitation the equilibration process is wavelength dependent for the disconnected rings at room temperature and becomes more pronounced by lowering the temperature. The wavelength dependence is resulted from the interplay between exciton population redistribution among pigments and the population, which stucks in the most red pigments.

Article information

Article type
Paper
Submitted
24 Nov 2003
Accepted
23 Apr 2004
First published
18 May 2004

Phys. Chem. Chem. Phys., 2004,6, 3097-3105

Exciton dynamics in ring-like photosynthetic light-harvesting complexes: a hopping model

D. Abramavicius, L. Valkunas and R. van Grondelle, Phys. Chem. Chem. Phys., 2004, 6, 3097 DOI: 10.1039/B315252A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements