Issue 3, 2004

The nature of water on surfaces of laboratory systems and implications for heterogeneous chemistry in the troposphere

Abstract

A number of heterogeneous reactions of atmospheric importance occur in thin water films on surfaces in the earth's boundary layer. It is therefore important to understand the interaction of water with various materials, both those used to study heterogeneous chemistry in laboratory systems, as well as those found in the atmosphere. We report here studies at 22 °C to characterize the interaction of water with such materials as a function of relative humidity from 0–100%. The surfaces studied include borosilicate glass, both untreated and after cleaning by three different methods (water, hydrogen peroxide and an argon plasma discharge), quartz, FEP Teflon film, a self assembled monolayer of n-octyltrichlorosilane (C8 SAM) on glass, halocarbon wax coatings prepared by two different methods, and several different types of Teflon coatings on solid substrates. Four types of measurements covering the range from the macroscopic level to the molecular scale were made: (1) contact angle measurements of water droplets on these surfaces to obtain macroscopic scale data on the water-surface interaction, (2) atomic force microscopy measurements to provide micron to sub-micron level data on the surface topography, (3) transmission FTIR of the surfaces in the presence of increasing water vapor concentrations to probe the interaction with the surface at a molecular level, and (4) X-ray photoelectron spectroscopy measurements of the elemental surface composition of the glass and quartz samples. Both borosilicate glass and the halocarbon wax coatings adsorbed significantly more water than the FEP Teflon film, which can be explained by a combination of the chemical nature of the surfaces and their physical topography. The C8 SAM, which is both hydrophobic and has a low surface roughness, takes up little water. The implications for the formation of thin water films on various surfaces in contact with the atmosphere, including building materials, soil, and vegetation, are discussed.

Article information

Article type
Paper
Submitted
17 Jul 2003
Accepted
08 Dec 2003
First published
12 Jan 2004

Phys. Chem. Chem. Phys., 2004,6, 604-613

The nature of water on surfaces of laboratory systems and implications for heterogeneous chemistry in the troposphere

A. L. Sumner, E. J. Menke, Y. Dubowski, J. T. Newberg, R. M. Penner, J. C. Hemminger, L. M. Wingen, T. Brauers and B. J. Finlayson-Pitts, Phys. Chem. Chem. Phys., 2004, 6, 604 DOI: 10.1039/B308125G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements