Issue 12, 2003

A simple method for surface modification of microchannels

Abstract

We previously developed a simple surface modification procedure to form a nanostructure on a microcapillary surfaces. However, only one set of conditions was examined and further optimization appeared necessary. This paper presents a detailed examination of the surface modification procedure and the effects of the surface modification level on the immobilisation of lipase. We first performed the reaction using a microcapillary with a 320 μm i.d and a 20 cm length. The number of surface amino groups was increased by increasing the content of 3-aminopropyltriethoxysilane in the silylating reagent by 60%, but a much higher content did not further increase the number of amino groups on the surface. The number of immobilised amino groups did not influence the amount of immobilised lipase. The performance of the microcapillary reactors was evaluated using the 7-acetoxycoumarin hydrolysis reaction. The microcapillary reactors showed equal reaction efficiency to each other, implying that surface structure, rather than the number of amino groups, affect microreactor performance. In a comparison of efficiency with a batchwise system, microreactors showed higher efficiency. We also applied our surface modification method to a ceramic microreaction device, which has a square channel (400 μm × 400 μm × 20 cm). The resulting lipase-immobilized ceramic microreaction device retained the same reaction efficiency. These results demonstrate that this modification method is applicable for the further development of microreaction devices.

Graphical abstract: A simple method for surface modification of microchannels

Article information

Article type
Paper
Submitted
09 Jun 2003
Accepted
12 Aug 2003
First published
01 Oct 2003

New J. Chem., 2003,27, 1765-1768

A simple method for surface modification of microchannels

J. Kaneno, R. Kohama, M. Miyazaki, M. Uehara, K. Kanno, M. Fujii, H. Shimizu and H. Maeda, New J. Chem., 2003, 27, 1765 DOI: 10.1039/B306536G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements