Issue 2, 2003

Cu(ii) ion coordination to SPARC: a model study on short peptide fragments

Abstract

SPARC (secreted protein, acidic and rich in cysteine) is a glycoprotein of the extracellular matrix that mediates the cell-matrix interactions. It plays also a role in angiogenesis, tumorigenesis, caractogenesis and wound healing. The human SPARC consists of three distinct modules. Module II is follistatin-like and its hydrolysis gives rise to a number of oligopeptides that can regulate angiogenesis in vivo and the biological activity of which has been related to their association with endogenous or exogenous copper ion.

In order to completely understand the biological role of metal complexes formed by SPARC and its fragments, more information is needed on their stoichiometry, stability and structure in solution. In the present paper a potentiometric and spectroscopic investigation on Cu(II) complexes with the three SPARC122–126, SPARC121–126 and SPARC120–126 fragments, protected at both their amino and carboxylic ends, is reported. These peptides (Ac-HKLHL-NH2, Ac-GHKLHL-NH2 and Ac-KGHKLHL-NH2, respectively) constitute good models for the strong copper-binding site of the protein.

The behaviour of the three ligands is very similar: complex formation is started by the two His residues, subsequently involving up to three amido nitrogens, as pH increases. The coordination of the two histydyl imidazoles promotes amide ionization in the physiological pH range and this can explain SPARC binding to the Cu(II) ion.

Graphical abstract: Cu(ii) ion coordination to SPARC: a model study on short peptide fragments

Article information

Article type
Paper
Submitted
09 Jul 2002
Accepted
15 Oct 2002
First published
02 Jan 2003

New J. Chem., 2003,27, 245-250

Cu(II) ion coordination to SPARC: a model study on short peptide fragments

M. Remelli, M. Łuczkowski, A. Mieczysław Bonna, Z. Mackiewicz, C. Conato and H. Kozłowski, New J. Chem., 2003, 27, 245 DOI: 10.1039/B206642D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements