Issue 8, 2003

Plasma temperature measurement of a low-pressure inductively coupled plasma using spectroscopic methods

Abstract

Direct nebulization of an aqueous sample was successfully carried out in our laboratory in a lab-built low pressure-inductively coupled plasma (LP-ICP) using a double membrane desolvator (DMD). For the particular LP-ICP used, rotational temperatures of selected diatomic molecules and excitation temperatures of Fe II and Fe I were measured. The OH radical showed two rotational temperatures, low and high. The former were obtained in the range 800 to 1100 K, while the latter were obtained between 1850 and 2800 K. The molecular nitrogen ion consistently obtained the same temperatures as those of the high rotational temperatures of the OH radical. This result suggests that the high density of rotational states of these molecules, N+2 and OH radical, allows collisional energy exchange between molecular rotational and argon translational degrees of freedom in the plasma. An increase of plasma gas flow from 0.3 to 1.1 L min−1 produced a decrease of excitation temperatures of Fe II from 10400 to 9200 K. The excitation temperature of Fe I was measured to be about 6000 K. Noticeably, the excitation temperature of Fe ion was high, and even higher than that reported in an atmospheric ICP. This experiment provides proof that the mechanism of ionization and excitation was influenced mainly by the character of electrons in the low-pressure plasma.

Article information

Article type
Paper
Submitted
20 Mar 2003
Accepted
23 May 2003
First published
09 Jul 2003

J. Anal. At. Spectrom., 2003,18, 897-901

Plasma temperature measurement of a low-pressure inductively coupled plasma using spectroscopic methods

Y. Sung and H. B. Lim, J. Anal. At. Spectrom., 2003, 18, 897 DOI: 10.1039/B303191H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements