Volume 122, 2003

A SAXS/WAXSXAFS study of crystallisation in cordierite glass

Abstract

New Cr X-ray absorption fine structure (XAFS) data have been combined with the results of small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) experiments to probe in detail the crystallisation mechanism in cordierite (Mg2Al4Si5O18) glass doped with 0.34 mol% Cr2O3. By direct comparison with chromo-aluminate spinels (MgCr2xAl2(1−x)O4) Cr XAFS is used to determine the composition of the devitrified Cr species. This is identified as MgCr0.18Al1.82O4, which can be directly related to the Cr content in the starting glass and as a result the total crystalline volume in the fully developed ceramic is predicted to be 4%. In situ WAXS not only reveals the presence of the spinel phase but also a silica-rich stuffed quartz phase. This grows independently of the spinel and is probably nucleated from the glass surface. From our knowledge of the compositions of both crystalline phases we are able to deduce that the SAXS contrast between the surrounding glass and the spinel crystallites is 30 times greater than that between the quartz crystallites and the glass matrix, and therefore dominates the measured scattered intensity and the SAXS invariant that is derived from it. As a consequence we are able to show that the spinel crystalline volume fraction inherent in the SAXS is in close agreement with the 4% value obtained from the Cr XAFS. Furthermore in situ SAXS reveals the gradual development of the spinel particle size and shape during heat treatment. This is conducted in the super-cooled region just above the glass transition temperature, Tg. By employing a two-step annealing process nucleation can be separated from growth and from time-resolved SAXS measurements the alumino-chromate nanocrystals are found to be closely monodispersed. Over a total time course of 600 min they grow from rough crystallites to smooth spherical particles of radius 21 ± 2 nm, with a final density of (1.2 ± 0.4) × 1021 m−3. As the process of ceramic formation takes place in the viscous melt, growth is indeed found to be limited by diffusion and is complete when all the Cr is exhausted. We use this comprehensive in situ study of crystallisation in cordierite glass to demonstrate the advantages of combining SAXS, WAXS and XAFS for probing the time-resolved chemistry, the microstructure and its development from nucleation sites, that underpins the processing of nanoparticle ceramics.

Article information

Article type
Paper
Submitted
05 Mar 2002
Accepted
08 Apr 2002
First published
24 Jul 2002

Faraday Discuss., 2003,122, 299-314

A SAXS/WAXS XAFS study of crystallisation in cordierite glass

G. N. Greaves, W. Bras, M. Oversluizen and S. M. Clark, Faraday Discuss., 2003, 122, 299 DOI: 10.1039/B202331H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements