Issue 8, 2003

Synthesis of NiCl2nanotubes and fullerene-like structures by laser ablation: theoretical considerations and comparison with MoS2nanotubes

Abstract

Laser ablation has been extensively used for the synthesis of nanoparticles of various sorts, and in particular single wall carbon nanotubes and C60 molecules. NiCl2 nanotubes were recently also produced using this technique. While fullerene-like NiCl2 structures can be obtained through regular ablation, vapor phase enriched with CCl4 gas (reactive ablation) is necessary for the synthesis of the nanotubes. The experimental results indicate that the synthesis of such nanotubes is much more difficult than the synthesis of say MoS2 or WS2 nanotubes. Moreover, the NiCl2 nanotubes are of larger diameter and consist on the average of more layers than their MoS2 predecessors. First principle calculations show that single layer NiCl2 nanotubes of diameter smaller than 54 nm are unstable and lose their outer chlorine atoms. In contrast, MoS2 nanotubes with diameter of 2 nm and larger are found to be stable using the same kind of calculations. To gain better understanding of the differences between the materials, a review of the mechanical properties of layered metal dihalide and metal dichalcogenide compounds is undertaken. First principle calculations show that the Young's and bending moduli of NiCl2 are almost twice larger than those of MoS2. The large ionicity of NiCl2 entails much larger shear and stacking fault energies for this compound as compared to MoS2, which explains its smaller propensity to bend and fold. These observations are supported by analysis of the corresponding Raman modes.Furthermore, metal dihalide compounds are very hygroscopic making their handling, and especially their analysis more difficult. This analysis explains the greater difficulties to grow NiCl2 nanotubes or fullerene-like nanoparticles, as compared to their MoS2 analogues.

Article information

Article type
Paper
Submitted
27 Nov 2002
Accepted
26 Feb 2003
First published
18 Mar 2003

Phys. Chem. Chem. Phys., 2003,5, 1644-1651

Synthesis of NiCl2 nanotubes and fullerene-like structures by laser ablation: theoretical considerations and comparison with MoS2 nanotubes

Y. Rosenfeld Hacohen, R. Popovitz-Biro, Y. Prior, S. Gemming, G. Seifert and R. Tenne, Phys. Chem. Chem. Phys., 2003, 5, 1644 DOI: 10.1039/B211737A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements