Issue 12, 2003

Determination of unreacted 2,4-toluene diisocyanate (2,4TDI) and 2,6-toluene diisocyanate (2,6TDI) in foams at ultratrace level by using HPLC-CIS-MS-MS

Abstract

Isocyanates can cause occupational asthma. By using available HPLC-UVF methods, isocyanates can be quantified only at levels above 1% of the Permissible Exposure Limits (PEL). Once sensitized, workers can react to concentrations below these limits of detection (LOD) making these methods insufficiently sensitive to adequately evaluate trace amounts of isocyanates present in air or in materials at safe levels for sensitized workers. This article describes a novel method for isocyanate analysis allowing the quantification of 2,4TDI and 2,6TDI monomers at very low concentrations using HPLC-CIS-MS-MS. The method's sensitivity increases with a decrease in the alkali radius. The LOD is 0.039 ng mL−1 for 2,4TDI and 0.100 ng mL−1 for 2,6TDI in solution when lithium is the alkali adduct, which is 20 times more sensitive than HPLC-UVF method. This new method allows determination in foam at levels of 0.078 ng g−1 for 2,4TDI and 0.200 ng g−1 for 2,6TDI respectively, for a 0.5 g foam sample. This is more than 100 times more sensitive than other methods for determining free monomers in solid materials. Analytical reproducibility and precision are better than 92% and 93% for both diisocyanate monomers. The use of HPLC-UVF conventional method failed to detect unreacted isocyanates in foam samples, but TDI monomers were quantified by HPLC-CIS-MS-MS.

Article information

Article type
Paper
Submitted
29 Aug 2003
Accepted
22 Oct 2003
First published
11 Nov 2003

Analyst, 2003,128, 1447-1451

Determination of unreacted 2,4-toluene diisocyanate (2,4TDI) and 2,6-toluene diisocyanate (2,6TDI) in foams at ultratrace level by using HPLC-CIS-MS-MS

S. Gagné, J. Lesage, C. Ostiguy and H. Van Tra, Analyst, 2003, 128, 1447 DOI: 10.1039/B310463J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements