Issue 4, 2003

Non-trivial temperature effects on the cation exchange chromatography and chelation ion chromatography of metal ions

Abstract

The effect of column temperature upon the retention of metal ions on sulfonated and mono-, di-, and amino-carboxylated cation exchange columns has been investigated. The retention of alkali, alkaline earth and transition metal ions on each of the above types of cation exchanger was studied over the temperature range 19–65 °C. A major difference between the behaviour of mono- and divalent metal ions was shown on each of the above stationary phases, with the monovalent alkali metals exhibiting clearly exothermic behaviour (a decrease in retention with increased temperature) under acidic eluent conditions and an apparent relationship between retention factor and the magnitude of the temperature effect. The effect of temperature upon alkaline earth metal ions was less defined, although strongly endothermic behaviour (increase in retention with temperature) could be seen on all stationary phases through correct choice of eluent. The transition metal ions studied showed endothermic behaviour on all four stationary phases, with the sulfonated column unexpectedly showing the largest increases in retention. The above behaviour can be partially explained through the dominance of the type of solute-stationary phase interaction governing retention. In several of the above columns, both ion-exchange and surface complexation interactions can occur, with the effects of temperature indicating which process dominates under specific eluent conditions.

Article information

Article type
Paper
Submitted
09 Jan 2003
Accepted
12 Mar 2003
First published
26 Mar 2003

Analyst, 2003,128, 335-344

Non-trivial temperature effects on the cation exchange chromatography and chelation ion chromatography of metal ions

B. Paull and W. Bashir, Analyst, 2003, 128, 335 DOI: 10.1039/B300340J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements