Issue 1, 2003

Chemical rank estimation by noise perturbation in functional principal component analysis

Abstract

Some kinds of chemical data are not only univariate or multivariate observations of classical statistics, but also functions observed continuously. Such special characters of the data, if being handled efficiently, will certainly improve the predictive accuracy. In this paper, a novel method, named noise perturbation in functional principal component analysis (NPFPCA), was proposed to determine the chemical rank of two-way data. In NPFPCA, after noise addition to the measured data, the smooth eigenvectors can be obtained by functional principal component analysis (FPCA). The eigenvectors representing noise are sensitive to the perturbation, on the other hand, those representing chemical components are not. Therefore, by comparing the difference of eigenvectors obtained by FPCA with noise perturbation and by traditional principal component analysis (PCA), the chemical rank of the system can be achieved accurately. Several simulated and real chemical data sets were analyzed to demonstrate the efficiency of the proposed method.

Supplementary files

Article information

Article type
Paper
Submitted
17 Jun 2002
Accepted
21 Nov 2002
First published
10 Dec 2002

Analyst, 2003,128, 75-81

Chemical rank estimation by noise perturbation in functional principal component analysis

C. Xu, Y. Liang, Y. Li and Y. Du, Analyst, 2003, 128, 75 DOI: 10.1039/B205818A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements