Issue 8, 2002

Photocontrol of liquid motion on an azobenzene monolayer

Abstract

This paper describes a novel strategy for the non-mechanical motion of a liquid droplet by photoisomerization of surface-immobilized azobenzenes. When a liquid droplet is placed on a substrate surface that has been modified with a monolayer of azobenzene-terminated calix[4]resorcinarenes, alternating irradiation with UV and blue light causes in situ changes in the contact angle of the droplet. The spreading/retraction motion of a liquid droplet is based on the reversible change in surface free energy of the photoresponsive surface due to the transcis isomerization of the azobenzene molecules. By measuring the hysteresis in contact angles of various liquids, we determined the principal requirement for the motion of a liquid droplet to occur: a receding contact angle on a trans-rich surface should be larger than an advancing contact angle on a cis-rich surface. Localized illumination of a liquid droplet of several millimeters in diameter causes it to move vectorially across the photoresponsive surface. The direction and velocity of the motion are tailored by manipulating both the direction and steepness of an applied light intensity gradient. Detailed profiles of a moving droplet support the assumption that the surface-assisted motion is ascribed to an imbalance in contact angles. The potential applicability of light-driven motion to lab-on-a-chip technology was presented by delivery of reactants for a chemical reaction on a photoresponsive surface by illumination.

Graphical abstract: Photocontrol of liquid motion on an azobenzene monolayer

Article information

Article type
Paper
Submitted
26 Nov 2001
Accepted
17 May 2002
First published
27 Jun 2002

J. Mater. Chem., 2002,12, 2262-2269

Photocontrol of liquid motion on an azobenzene monolayer

S. Oh, M. Nakagawa and K. Ichimura, J. Mater. Chem., 2002, 12, 2262 DOI: 10.1039/B110825P

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements