Volume 120, 2002

Complex morphogenesis of surfaces: theory and experiment on coupling of reaction–diffusion patterning to growth

Abstract

Reaction–diffusion theory for pattern formation is considered in relation to processes of biological development in which there is continuous growth and shape change as each new pattern forms. This is particularly common in the plant kingdom, for both unicellular and multicellular organisms. In addition to the feedbacks in the chemical dynamics, there is then another loop linking size and shape changes with the reaction–diffusion patterning of growth controllers in the growing region. In studies by computation, the codes must incorporate, alongside the usual solvers of the partial differential dynamic equations, a versatile growth code, to express any kind of shape change. We have found that regulation of shape change in particular ways (e.g. to make narrow-angle branchings) demands new features in our chemical mechanisms. Our growth algorithm is for a surface growing tangentially, but moving outward and changing shape to accommodate the extra area. This is potentially applicable both to the tunica layer of multicellular plant meristems and to the growing tip of the cell surface, e.g. in the morphogenesis of single-celled chlorophyte algae which display branching processes: whorl formation in Acetabularia (Dasycladales) and repeated dichotomous branching in Micrasterias (Desmidiaceae). For computational studies, a hemispherical shell is a reasonable idealization of the initial shape. We describe results of two types of study: (1) Pattern formation by three reaction–diffusion models, with contrasted nonlinearities, on the hemispherical shell, particularly to find conditions for robust formation of annular pattern or pattern for dichotomous branching, both of which are common in plants. (2) Sequential dichotomous branchings in a system growing and changing in shape from the hemispherical start.

Article information

Article type
Paper
Submitted
10 Apr 2001
First published
27 Nov 2001

Faraday Discuss., 2002,120, 277-293

Complex morphogenesis of surfaces: theory and experiment on coupling of reaction–diffusion patterning to growth

L. G. Harrison, S. Wehner and D. M. Holloway, Faraday Discuss., 2002, 120, 277 DOI: 10.1039/B103246C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements