Issue 2, 2002

Abstract

In 13C cross-polarisation magic angle spinning (CPMAS) spectra of soil samples, the paramagnetic soil constituents partially discriminate against the signal intensity of the 13C atoms. The aim of the present study was to check to what extent this signal depression depends on the paramagnetic ion content and if it is selective for a certain kind of carbon species. The spectra of a variety of particle size fractions of five quite different soils were recorded. A procedure was developed to compare quantitatively the relative carbon content of the different spectra. It was found that iron ions differ in their efficiency to discriminate against the carbon signals. Nevertheless a strong linear correlation between the detectability of carbon and 3√(wt.%Fe) was observed for both the total signal and the signal of the different carbon species as well. This underlines that iron ions mainly influence the depression of the 13C signal in soil spectra. Furthermore we found, that for C∶Fe ratios of 1.5 to 20 non-selective signal losses dominate. Despite a high percentage of non-detectable carbon (up to 90%), the 13C CPMAS spectra of our soil samples correctly reflect the relative composition of soil organic matter.

Article information

Article type
Paper
Submitted
16 Jul 2001
Accepted
13 Dec 2001
First published
08 Feb 2002

J. Environ. Monit., 2002,4, 313-317

Non-selective signal loss in the 13C CPMAS NMR spectra of soil organic matter. Investigations of particle size fractions

H. Jancke, S. Beetz and W. Bechmann, J. Environ. Monit., 2002, 4, 313 DOI: 10.1039/B106312J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements