Issue 23, 2002

The role of deprotonation of the ligand on the structures of metal phosphonates: synthesis, characterization and crystal structures of two new metal diphosphonates with a 1D double chain and a 2D layer structure

Abstract

Reactions of N-methyl-iminobis(methylenephosphonic acid), CH3N(CH2PO3H2)2, (H4L) with divalent metal nitrates in aqueous solution afforded two new metal diphosphonates with different structures. Zn(H2L)(H2O) (1) features a 1D double chain built from ZnO4 tetrahedra cross-linked by bridging phosphonate groups and ligands. Each zinc cation is tetrahedrally coordinated by three phosphonate oxygen atoms from three ligands and an aqua ligand. These double chains are interconnected into a <111> layer through N–H⋯O and O–H⋯O hydrogen bonds. In Cd(H3L)2·2H2O (2) the Cd(II) ion is octahedrally coordinated by six phosphonate oxygen atoms from four ligands, two of them in a bidentate and two in a unidentate fashion. Each CdO6 octahedron is further linked to four neighboring CdO6 octahedra through four bridging phosphonate groups, resulting in a two-dimensional metal phosphonate (002) layer. These layers are held together by strong hydrogen bonds between uncoordinated phosphonate oxygen atoms. The effect of the extent of deprotonation of phosphonic acids on the type of complex formed is discussed.

Graphical abstract: The role of deprotonation of the ligand on the structures of metal phosphonates: synthesis, characterization and crystal structures of two new metal diphosphonates with a 1D double chain and a 2D layer structure

Supplementary files

Article information

Article type
Paper
Submitted
02 May 2002
Accepted
18 Sep 2002
First published
29 Oct 2002

J. Chem. Soc., Dalton Trans., 2002, 4457-4463

The role of deprotonation of the ligand on the structures of metal phosphonates: synthesis, characterization and crystal structures of two new metal diphosphonates with a 1D double chain and a 2D layer structure

J. Mao, Z. Wang and A. Clearfield, J. Chem. Soc., Dalton Trans., 2002, 4457 DOI: 10.1039/B204270N

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements