Issue 20, 2002

Eigenvalue spectrum of the master equation for hierarchical dynamics of complex systems

Abstract

We explored the eigenvalue spectra of the kinetic matrix which defines the master equation for the complex kinetics of the analogous polypeptides (linear Ala6, cyclic Ala6, and charged Ala6). For each system we obtained the entire eigenvalue spectrum as well as the histograms of the weighted eigenvalue spectra, where each relaxation mode is weighted by the overlap between the initial probability vector and the corresponding eigenvector. It was found that the spectra of the weighted eigenvalues were significantly filtered in comparison to those of the unweighted eigenvalues, indicating that the decay is described by a small number of eigenvalues. The important eigenvalues which are extracted from the weighted eigenvalues spectra are in good agreement with the characteristic lifetimes for the kinetics of each system, as found by the fitting of the energy relaxation temporal profiles to multiexponential functions. Moreover, a partial correlation is found between the relative heights of the contributions of the important eigenvalues and the preexponential factors obtained by the fitting. In addition, we applied the spectra of the weighted eigenvalues to study the effect of the initial population distribution on the dynamics and also to infer which minima provide the dominant contributions to a specific relaxation mode. From the latter results one can infer whether the multiexponential relaxations represent sequential or parallel processes. This analysis establishes the interrelationship between the topography and topology of the energy landscapes and the hierarchy of the relaxation channels.

Article information

Article type
Paper
Submitted
10 Apr 2002
Accepted
07 Aug 2002
First published
11 Sep 2002

Phys. Chem. Chem. Phys., 2002,4, 5052-5058

Eigenvalue spectrum of the master equation for hierarchical dynamics of complex systems

Y. Levy, J. Jortner and R. S. Berry, Phys. Chem. Chem. Phys., 2002, 4, 5052 DOI: 10.1039/B203534K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements