Issue 8, 2002

Multi-adsorbent preconcentration/focusing module for portable-GC/microsensor-array analysis of complex vapor mixtures

Abstract

A small multi-adsorbent preconcentration/focusing module for a portable GC with microsensor-array detector designed to determine complex mixtures of volatile and semi-volatile organic compounds encountered in indoor working environments is described. Candidate adsorbents were assessed on the basis of analyte thermal-desorption bandwidth and efficiency, chromatographic peak shape, and breakthrough volume against mixtures of organic compounds ranging over four orders of magnitude in vapor pressure. A capillary packed with just 12.3 mg of adsorbent material comprising Carbopack B (8 mg), Carbopack X (2.5 mg) and Carboxen 1000 (1.8 mg) provided the best tradeoff in operating variables, while maintaining sufficient capacity for a 1 L air sample containing a mixture of up to 43 compounds, each at 100 parts-per-billion, at an ambient relative humidity of up to 100%. On-column focusing and temperature programming were used to enhance chromatographic separations, and detection limits as low as 100 parts-per-trillion were achieved for a 1 L air sample using an integrated array of polymer-coated surface-acoustic-wave (SAW) sensors. Implications for field analysis of indoor air quality are emphasized.

Article information

Article type
Paper
Submitted
03 Jan 2002
Accepted
08 Jun 2002
First published
19 Jul 2002

Analyst, 2002,127, 1061-1068

Multi-adsorbent preconcentration/focusing module for portable-GC/microsensor-array analysis of complex vapor mixtures

C. Jung Lu and E. T. Zellers, Analyst, 2002, 127, 1061 DOI: 10.1039/B111689D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements