Issue 1, 2001

Abstract

Previous experimental work has demonstrated that elemental mercury evasion from natural water displays a diel cycle; evasion rates during the day can be two to three times evasion rates observed at night. A study with polychlorinated biphenyls (PCBs) found that diurnal PCB air/water exchange rates exceeded nocturnal exchange rates by 32%. Given that the exchange rates of both PCBs and elemental mercury are dominated by the resistance in the aqueous thin film at the air/water interface and that water column elemental mercury concentrations in natural water bodies also display a diel cycle (and water column PCB concentrations do not) the findings here suggest that PCBs can serve as a tracer to assess the relative contribution of diel atmospheric temperature variations on elemental mercury air/water exchange rates. Using previously published data describing water column elemental mercury concentrations and the previously published diel mercury evasion model, four evasion scenarios are examined within the context of monitoring air/water toxicant exchange: constant atmospheric temperatures and constant water column elemental mercury concentrations; variable atmospheric temperatures and constant water column elemental mercury concentrations; constant atmospheric temperatures and variable water column elemental mercury concentrations; and variable atmospheric temperatures and variable water column elemental mercury concentrations. A scenario of monthly elemental mercury air/water exchange also is examined (at constant atmospheric and water column elemental mercury concentrations). Some of the findings include: (1) atmospheric temperature variations do have a significant effect on air/water toxicant exchange; (2) diel atmospheric temperature variations become more significant to overall diel toxicant exchange rates the closer the air/water system is to equilibrium conditions; (3) for refractory toxicants, average diel exchange rates are best estimated by averaging datasets obtained over a 24 h period or, at minimum, by measuring exchange rates at average atmospheric temperature values; (4) for elemental mercury, variable diel water column concentrations are likely to be the dominant contributor to variations in diel evasion rates; (5) diel atmospheric temperature variations amplify the magnitudes of both diel mercury evasion and absorption events and can shift maximum evasion rates to later in the day; (6) variations in monthly elemental mercury air/water exchange rates may exceed diel variations; and (7) 24 h and monthly monitoring efforts will likely be required to accurately describe diel and annual elemental mercury air/water exchange in a given system.

Supplementary files

Additions and corrections

Article information

Article type
Paper
Submitted
10 Jul 2000
Accepted
22 Nov 2000
First published
13 Jul 2001

J. Environ. Monit., 2001,3, 43-48

Monitoring cyclical air/water elemental mercury exchange

N. T. Loux, J. Environ. Monit., 2001, 3, 43 DOI: 10.1039/B005545J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements